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In Physics, a correlator is defined in quantum field theory via a path integral, with 
some contour prescription. It is physically desirable to ask that the path integral be 
invariant under an infinitesimal shift of the contour (provided that the integral 
measure is left invariant by such a shift). Schwinger and Dyson explained that this 
constraint can be recast as a set of equations satisfied by such a correlator, and 
that the equations will encode a symmetry of the underlying quantum field 
theory.

For example, consider the path integral of four-dimensional Yang-Mills theory, 
with its contour defined in some topological sector, and shift the contour to a 
different topological sector, related to the former by a large gauge transformation. 
Recall that the connected components of the space of gauge fields are labeled by 
an integer called the instanton charge:                                      , where       is the field 
strength and the domain of integration is the spacetime. Put differently: what are 
the Schwinger-Dyson equations associated with varying the instanton charge? 
What are the corresponding symmetries of Yang-Mills theory?



Thanks to the success of equivariant localization methods, this question was 
recently answered in the context of 4d supersymmetric Yang-Mills, on a 
regularized spacetime called the -background on          .
[Nekrasov ‘02]  [Losev-Marshakov-Nekrasov ’03]  [Nekrasov-Witten ’10] 

The idea is as follows: on this background, the instanton number can be changed 
by adding and removing point-like instantons in a controlled way, and the shift of 
contour in the definition of the path integral turns into the discrete operation of 
adding and removing boxes in a Young tableau [Nekrasov-Okounkov ’03].

One finds that the Schwinger-Dyson equations encode a Yangian symmetry of the 
theory [Nekrasov ’15]. More precisely, the equations are a set of regularity 
conditions on the twisted (deformed) character of some finite dimensional 
irreducible representation of a Yangian algebra.



The above result can be generalized in many ways, and has been an active subject 
of investigation:
- Adding surface defects. [Nekrasov ’17] [Jeong-Nekrasov ’18]

- Yang-Mills with different gauge groups. [Haouzi-Oh ’20] 

- K-theoretic instanton counting (5d Super Yang-Mills on a circle) leads to quantum 
affine symmetry. [Kimura-Pestun ’15]  [Kim ’16]  [Mironov-Morozov-Zenkevich ’16]       
[Chang-Ganor-Oh ’16]  [Kimura-Mori-Sugimoto ’17]  [Bourgine-Fukada-Harada-Matsuo-Zhu ’17]     
[Assel- Sciarappa ’18]  [Haouzi-Kozçaz ’19]  [Bourgine-Jeong ’19]  [Haouzi ‘20] 

- Elliptic cohomology (6d Super Yang-Mills on a 2-torus) leads to quantum elliptic 
symmetry. [Kimura-Pestun ’16]  [Agarwal-Kim-Kim-Sciarappa ’18]

Remarkably, equivariant localization can be performed to yield exact expressions 
and non-perturbative Schwinger-Dyson identities in all of the above cases.



What about lower-dimensional gauge theories? For example, consider a two-
dimensional gauged linear sigma model on the complex line      . There exists once 
again distinct topological sectors of the theory, this time labeled by an integer 
called the vortex charge:                      , where        is the field strength and the 
integration is over the complex line transverse to the vortex. Then, it is natural to 
ask what the associated Schwinger-Dyson equations are in this case [Nekrasov ‘17].

In this talk, we address this question, again in a supersymmetric setting. 



In fact, it will be a fruitful endeavor to work in a K-theoretic framework: For 
definiteness, let         be a 3d                quiver gauge theory defined on the 
manifold , where the quiver is labeled by a simply-laced Lie algebra  
of rank      . The Lagrangian is captured by the following quiver diagram, of shape 
the Dynkin diagram of , where positive integers label the rank of unitary gauge 
group                                      and flavor symmetry group                                        :



The theory has a moduli space of vacua called Coulomb and Higgs branches, 
and a corresponding R-symmetry, where each acts on 
the two branches separately. 
Our goal is to exhibit certain symmetries associated to finite energy configurations 
of BPS vortices, which sit at Higgs vacua of . Therefore, from now on, we 
require that G3d possess a Higgs branch (i.e. existence of a Nakajima quiver 
variety), and moreover that all vacua we study be Higgs vacua. In other words, the 
flavor symmetry group should have a large enough rank. The vortices we 
study are semi-local non-abelian versions of [Nielsen-Olesen ‘73] solutions.

In this discussion, the main actor in this talk is a codimension-2 line defect of  
at a point on and wrapping             , which will mediate the change in vortex 
number. The cleanest way to describe the physics is to realize that both the 
vortices and the line defect are particles in three dimensions. Then, let be the 
one-dimensional gauged quantum mechanics living on the vortices of         , in the 
presence of the defect. 



arises as follows: On the Higgs branch of , the gauge group      breaks to 
its        centers. Correspondingly, we turn on F.I. parameters, which breaks the 
R-symmetry to                                    , and study the resulting 1/2-BPS vortex 
solutions. The resulting quantum mechanics has 1d               supersymmetry, with 
supercharges inherited from the 3d theory. It is again of quiver type, with gauge 
group given by the vortex numbers,                          , and flavor group determined 
from the 3d theory masses.



As an example, when                 and without defect:

is sometimes called a ‘hand-saw’ quiver, isomorphic to a parabolic Laumon
space [Finkelberg-Rybnikov ’10]. It is the moduli space of based quasi maps from  
into a flag variety [Venugopalan-Woodward ’13] .



The data characterizing the line defect is an extra flavor group                           . 
Additional 1d chiral matter transforms in the fundamental representation 
of that group. In our previous example, this reads:



We write the partition function of          as the (twisted) Witten index of the 
following               gauged quantum mechanics:

The trace is taken over all BPS states of the quantum mechanics. The index counts 
states in     -cohomology. We denoted the fermion number by      ,       is a generator 
of the Cartan subalgebra of                , while   is a generator of              .     is the 
radius of the circle, and       stands collectively for all the twists by the flavor 
symmetries of the quantum mechanics:



The index is the grand canonical ensemble of vortex BPS states. There is a natural 
grading by the vortex numbers                                         , which are the topological              

charges conjugate to the F.I. parameters         in 3d, and the rank of the gauge 
group in 1d.

Then, the quantum mechanics index can be organized as a sum over the vortex 
sectors                                 .                                         



The Witten index does not depend on the circle scale . In particular, we can 
work in the limit  , where it reduces to Gaussian integrals around saddle 
points. These saddle points are parameterized by                                               , the 
scalar and the gauge field in the vector multiplet of the quantum mechanics. We 
denote the gauge group of this quantum mechanics as       , and the (complexified) 
eigenvalues of          as                              . 
Performing the Gaussian integrals over massive fluctuations, the index reduces to a 
zero mode integral of various 1-loop determinants, which we write schematically 
as: 



Crucially, the Witten index also depends implicitly on additional continuous 
parameters in a piecewise constant manner: the F.I. parameters , which are 
themselves -vectors, one for each abelian factor in gauge group of        . Indeed, 
when such a parameter changes sign and crosses the value , a non-
compact Coulomb branch opens up, and some vacua may appear or disappear, 
resulting in wall crossing and a jump in the index. This dependence on the 1d F.I. 
parameters is in one-to-one correspondence with the choice of the index 
integration contours. For the purpose of this talk, it is enough to claim that such a 
contour prescription exists, and goes by the name of Jeffrey-Kirwan (JK) residue 
prescription [Jeffrey-Kirwan ’93].

[Hwang-Kim-Kim-Park ’14]  [Cordova-Shao ’14]  [Hori-Kim-Yi ‘14] 

We choose to work in the chamber                 for all  . Other chambers realize 3d 
Seiberg-dual theories…



We now argue that we can make contact with the representation theory of 
quantum affine algebras by splitting the choice of contours for the index in a 
clever way. Namely, we organize the poles into two sets: for a given vortex 
number                                ,  let            be the set of poles selected by the JK-residue 
prescription in the Witten index. Meanwhile, let                 be the set poles selected 
by the JK-residue prescription for the “pure” Witten index, in the absence of the 
loop defect. 



For a given vortex number    , the set          is strictly larger than the set           ,                
since the defect loop factor                always contains JK-poles depending on           :

We then define a new observable, the vacuum expectation value of a ``loop defect 
operator” on node  , with corresponding mass            

Note the contour definition.



Example of 1-vortex contour for                        . The black crosses are poles in the 
set                , while the red dot is a pole in the set                           . The left contour 
is used in defining the Witten index, while the right contour is used in defining the 
defect    -operator vev. 



Our first result is the following: the Witten index of           can be presented as:

The index has the same integrand as the defect operator vev, which is the first term                          
on the right-hand side,                                        . However, the contours on the left-
hand side enclose more poles than those of the first term, since                                 , 
for each vortex number     . The dots are there to make up for that deficit of            -
poles, and result in a finite number of terms.

We emphasize here that at no point in the discussion do we need to know how to 
compute the index of the vortex theory in the absence of the defect. In other 
words, we do not need to know the content of the set of poles               . Instead, 
what is important here is the set of poles                           .



Our first result is the following: the Witten index of           can be presented as:

We find that the Witten index is a Laurent polynomial of                                          
terms in -operator vevs (and possibly derivatives thereof). It is a deformed 
twisted character of the finite-dimensional representation of the quantum affine 
algebra , with highest weight the first term                                    . 
The character is refined by the presence of flavor and R-symmetry fugacities
and     , so we call it a vortex -character. 
Note that If we take the size of the circle to zero in the 3d theory, we obtain a 2d 
(4,4) gauged sigma model with a ½-BPS point defect at the origin, and the above 
becomes the vortex      -character of a Yangian algebra instead, with the same 
functional form as above.



Our first result is the following: the Witten index of           can be presented as:

The Schwinger-Dyson identities are a statement about the regularity behavior of 
the Witten index in the fugacities . Namely, the vev has 
many apparent singularities in , but the quantum affine symmetry of the 
theory eliminates all but a finite number of them, thanks to the dotted terms. 



A brief guide to the literature on quantum affine algebras: 
The initial construction is due to [Jimbo ’86] and [Drinfeld ’87]. 

The systematic study of the representation theory of these algebras was initiated 
by [Chari-Pressley ’94]. 

Characters of finite-dimensional irreducible representations, dubbed   -characters, 
were first constructed by [Frenkel-Reshetikhin ‘98] in the 90’s. 
They were later rediscovered in a physical context when discussing K-theoretic 
instanton counting, i.e. the quantum geometry of 5d supersymmetric quiver gauge 
theories on a circle [Nekrasov-Pestun-Shatashvili ‘13] [Bullimore-Kim-Koroteev ‘14]. 

A deformed character depending on two parameters was introduced in [Awata-

Harunobu-Odake-Shiraishi ‘95] [Awata-Harunobu-Odake-Shiraishi ‘95] [Frenkel-Reshetikhin ‘97]

(see also the work of [Nakajima ‘00] on -analogues of  -characters). 
This “     -character" was again rediscovered in the context of 5d supersymmetric 
gauge theories [Nekrasov ‘15]. 

Here, we see that such deformed characters also appear in the context of vortex 
counting in 3d gauge theories.



Example: SQCD, first without defect: 



Example: SQCD, first without defect: 



Though this is not required in our discussion, we note in passing that the closed 
form of the evaluated integrals is well-known:

The equivariant integrations over the based quasi map spaces is the equivariant    
J-function for the flag variety, which in Physics is the reduction on the circle of the 
index to two dimensions. The integral we presented here is the K-theoretic uplift 
[Givental-Lee ‘13].



We now add the defect:



We now add the defect:



This is a twisted vortex character of the fundamental representation of the 
quantum affine algebra              .
The meaning of the above character is as follows: The first term on the right-hand 
side encloses almost all the “correct" poles in the index integrand, but it is missing 
exactly one: the extra pole at . The second term on the right-hand 
side makes up for this missing pole, and relies on a key observation: we can trade a 
contour enclosing this extra pole for a contour which does not enclose it, at the 
expense of inserting the operator                                inside the vev. Notice the 
presence of the 3d F.I. parameter in the second term; it counts exactly one vortex, 
to make up for the missing -pole, consistent with the fact that                                .



The Schwinger-Dyson identities are a statement about the ‘on-shell’ regularity of 
the above character in the fugacity       . First, we note there are singularities in the 
fugacity       coming from the prefactors in the second term. Second, and more 
importantly, the vev is a priori also badly singular in the fugacity . 
Nevertheless, and in a highly nontrivial fashion , it is the presence of the second 
term                                 cancels these apparent singularities. 
All in all, the vortex character is only mildly singular in       , due to the chiral matter 
factors: this is the content of the Schwinger-Dyson identities for 3d               gauge 
theories.



Can we derive this result directly from the 3d picture, without resorting to the 
vortex quantum mechanics?  [Pasquetti ’11], [Krattenthaler-Spiridonov-Vartanov ‘11], 
[Dimofte-Gukov ’11], [Beem-Dimofte-Pasquetti ’12], [Hwang-Kim-Park ’12], [Taki ’13], 
[Cecotti-Gaiotto-Vafa ’13], [Fujitsuka-Honda-Yoshida ’13], [Benini-Peelaers ‘13], 
[Yoshida-Sugiyama ‘14], [Benini-Zaffaroni ’15] …

Let us first review how to define an index for on                     in the absence of 
line defect. In Physics, this index is also referred to as a half-index, or holomorphic 
block. [Beem-Dimofte-Pasquetti ’12]

We first consider the 3-manifold in the -background, to regularize the non-
compactness of ; namely, if we let  be a coordinate on the complex line, we 
can view the 3-manifold as a -bundle over            , where as we go around the 
circle, we make the identification:



From now on, we denote the -line in this background as , with                . 
Then, the partition function of is defined via the following half-index:

As before, the index counts states in     -cohomology.       is the fermion number.      
is a rotation generator for , while        generates a symmetry. 
Meanwhile, generates a                                symmetry.             are Cartan
generators for the flavor group         , with conjugate fundamental masses                .



The gauge symmetry group                                      is first treated as a global 
symmetry, which we make abelian by breaking it to its maximal torus. One then 
gauges the symmetry by projecting to     -invariant states, which amounts to 
integrating over corresponding equivariant parameters:

The choice of contours determines a vacuum for , and in particular 
determines the choice of a specific vortex quantum mechanics .
The integrand               stands for the contribution of all the various multiplets to 
the index, which can be read off directly from the 3d               quiver:



We now want to introduce a 1/2-BPS loop defect in . We couple the one-
dimensional theory on the loop to the bulk three-dimensional theory by 
considering the flavor symmetries of the 1d theory and gauging them with 3d 
vector multiplets. From the point of view of the index, this translates into gauging 
the 1d masses, turning them into the scalars of the corresponding 3d               
vector multiplets. When the vector multiplet is dynamical, the scalar becomes an 
eigenvalue     to be integrated over, while in the case of a background vector 
multiplet, the scalar becomes a mass from the 3d point of view, and is not 
integrated over.
A defect on node has the generic form:



The vortex character is then defined as a sum of such Coulomb branch localization 
integrals, with 3d/1d contributions included. 
From the 3d perspective, the interpretation of the character as a sum over various 
integrals is rather mysterious: in the quantum mechanical picture, each term had 
an elegant interpretation as the residue of the vortex integrals at a defect-pole. No 
such interpretation is available here. 

In 3d, the vortex character is defined instead by the requirement that all the    -
singularities present in                           should be cancelled out by other    -operator 
vevs; this construction is guaranteed to exist and be unique, from known facts 
about the representation theory of quantum affine algebras.



Example: SQCD.
In the absence of Wilson loop, the half-index of the 3d theory reads:

with the bulk contribution:



Example: SQCD.
In the absence of Wilson loop, the half-index of the 3d theory reads:

with the bulk contribution:



We now introduce the 1/2-BPS Wilson loop wrapping via gauging its 1d 
degrees of freedom. A corresponding defect -operator vev is defined as an 
integral over the Coulomb moduli of the 3d theory:

with:



Then, the (normalized) vortex character of is defined as the following sum of 
two defect operator vevs:

This is once again a twisted      -character of the fundamental representation of the 
algebra             .

Up to overall normalization, this turns out to be the same character we had 
derived from the vortex quantum mechanics:



We will now see that the 3d vortex character observable has a very natural 
interpretation in the context of the BPS/CFT correspondence, as a correlator in 

deformed W-algebras.



The deformed W-algebra                is defined in Coulomb gas (i.e. free field) 
formalism. [Feigin-Frenkel ‘95] [Awata-Harunobu-Odake-Shiraishi ‘95] 

[Awata-Harunobu-Odake-Shiraishi ‘95] [Frenkel-Reshetikhin ‘97] 

In what follows,   denotes a simply-laced Lie algebra.

The starting point is to define a deformed Heisenberg algebra              , with 
generators  

which have the following commutators:

(In the above,                  is a modified Cartan matrix)



A Fock space representation of the Heisenberg algebra is constructed as follows: 
for each weight       of the Cartan subalgebra of     , the Fock representation is 
generated by a vector        such that 

The                -algebra is defined as the associative algebra whose generators are 
Fourier modes of the operators commuting with the screening charges,

Namely, it is generated by vertex operators                    satisfying:

These include a deformed Virasoro stress tensor and “higher spin” currents.



In this way, one finds that every generating current can be written as a Laurent 
polynomial in certain vertex operators, which we call Y-operators for reasons that 
will soon be clear:

The modes              are obtained from the Heisenberg generators:

Finally, we introduce       “fundamental” vertex operators:



We are interested in computing the following chiral correlators:

where we recall that the screening charges are integrals,

so one also needs to specify the contour. This can be done explicitly, using again 
the Jeffrey-Kirwan prescription.

Because of the free field formalism, the evaluation of the correlator can be done in 
a straightforward way using Wick contractions.



Up to overall normalization, we obtain the following result:

Namely, the correlator is the vortex character of the 3d gauge theory          ! 

Recall that the Schwinger-Dyson identity was a statement about the on-shell 
regularity of the vortex character in the fugacities . It is reinterpreted here 
as a Ward identity for a correlator involving fundamental vertex operator in the 
deformed                 algebra. 



For example, in deformed Liouville                 , the generating current has the form:                    

As an aside, note that one can turn off the deformation by taking the limit:

This limit takes                to the undeformed algebra             , where the central 
charge is determined from     . In particular, we recover the well-known Virasoro
stress tensor in the limit:



In this       example, the correlator of interest is:



We recognize the vortex character of the 3d gauge theory:



In this last part of the talk, we give a string theory realization of the vortex 
character observable, and will explain how it is related to our previous gauge 

theory and W-algebra descriptions.



For definiteness, consider:

is an infinite cylinder of radius      .         

is a resolved ADE singularity, labeled by a discrete subgroup of              :



So far the background has 16 supercharges. Since we are ultimately interested in 
the dynamics of three-dimensional gauge theories with 8 supercharges, we need 

to break supersymmetry further. A simple way to achieve this in string theory is to 
add D-branes.





By the McKay Correspondence, we can choose a class in                   to represent the 
brane charge due to the D3 branes wrapping the compact two-cycles, expanded in 
terms of positive simple roots:

Likewise, we choose a class in                          to represent the total charge due to 
the D3 branes wrapping the noncompact two-cycles, expanded in terms of 
fundamental weights:





Finally, we choose a class in                           to represent the total charge due to the 
D1 branes wrapping the noncompact two-cycles, expanded in terms of 
fundamental weights:



We will only focus on the degrees of freedom supported near the singularity at the 
origin of      , and decouple gravity. This is achieved in string theory by taking the 
string coupling limit                . 

In the limit, the resulting 6-dimensional theory on                   is a (noncritical) 
theory of strings known as the (2,0) little string theory.                

The low energy theory on the D3 branes is a quiver gauge theory, of shape the 
Dynkin diagram of     .  [Douglas-Moore ‘96]



The low energy theory on the D3 branes has the Poincare invariance of a two-
dimensional                    gauged linear sigma model, but it really is a 3d N=4 theory, 
on the manifold                      , where       is T-dual to     . This is precisely the theory 
we have been calling        .

Likewise, the D1 branes are really loops wrapping              . In a nontrivial B-field, 
these are ½-BPS defects of          .



Example of          when                  :

2

3

1



Positions of non-compact D3 branes on 𝐶 are mass parameters of the low energy 
quiver gauge theory         .

Positions of compact D3 branes on 𝐶 are Coulomb moduli of         . 

The gauge couplings and F.I. parameters come from various moduli of the metric 
on                    and spacetime NS-NS and R-R  B-fields:

Positions of the D1 branes on 𝐶 are the masses for 1d  chiral multiplets; 
these arise from quantizing the D1/D3 strings.



We want to compute the index of the (2,0) little string theory on in 
the presence of the various branes. This is equivalent to computing the index of 
the (1,1) little string on  , by T-duality. The latter picture makes the 
connection to the beginning of the talk explicit.

Indeed, by a supersymmetric localization argument, the index of the little string 
becomes the index of the theory on the defects. When only                  and                
branes are present, this computes the partition function of the gauge theory         .    

We now introduce the                   branes; these branes are nondynamical as they do 
not wrap , but they nonetheless modify the index by introducing a Y-operator 
insertion:

Chiral multiplets are provided by                                      strings, 
while chiral multiplets are provided by                                     strings.



All in all, this implies that the (normalized) index of the little string in the presence 
of all three types of branes localizes to the vortex      -character observable:



The above result also makes the dictionary to deformed               -algebras explicit: 
the screening charges are the                  branes, the fundamental vertex operators 
are the                   branes, and the generating currents are the branes. 
The little string index can therefore be recast as a               -algebra correlator:



To make contact with the vortex quantum mechanics , we need to do a little 
more work. Namely, we freeze the moduli of the                  branes to be equal to 
the moduli of the branes. This describes the root of the Higgs branch for 
the theory          . Geometrically, this means we can recombine the branes 
with the                   branes so that they exclusively make up a collection of 
branes wrapping the non-compact 2-cycles of     , and the theory is effectively 
massive:



Now, we would like to introduce vortices for . We force the theory on the 
Higgs branch by turning on the periods                       , which breaks the                    
R-symmetry of the little string to             . 

Correspondingly, this turns on      real F.I. parameter for          . The vortices are 
realized as                   branes wrapping the compact 2-cycles of     , at a point on the 
cylinder      in the (2,0) little string. 

Alternatively, they are branes wrapping the compact 2-cycles of and 
the circle of the cylinder       in the (1,1) little string. 



All in all, this implies that the (normalized) index of the little string in the presence 
of all three types of branes localizes to the vortex      -character observable:

In this picture, recall that the index depends on a choice of sign for the 1d F.I. 
parameters, and experiences wall crossing. In the little string context, this is the 
sign of the periods               . 



In conclusion, Schwinger-Dyson identities pertaining to the change in vortex 
number of a 3d theory (on a circle) can be recast in the analytic properties 
of an observable we called the vortex character, with quantum affine symmetry. 
We gave various physical realizations of it:



-- The vortex character is the Witten index of a one-dimensional gauged quantum 
mechanics living on the vortices of , with additional chiral matter due to the 
defect.

-- The vortex character is a sum of half-indices for , in the presence of a 
codimension-2 defect. More precisely, each term in the sum is a 3d/1d half-index, 
where one-dimensional degrees of freedom due to the defect are coupled to the 
bulk 3d theory.

-- The vortex character is a deformed              -algebra correlator on an infinite 
cylinder, with stress tensor and higher spin current insertions, and a distinguished 
set of ‘fundamental’ vertex operators.

-- The vortex character is the index of the six-dimensional (2,0) little string theory 
compactified on the cylinder, in the presence of codimension-4 and point-like 
defects; these are various D branes of type IIB on a resolved ADE singularity.



Future directions:

There are immediate generalizations in many directions: 
- Beyond the ADE quivers
- Beyond the unitary gauge groups
- Vortices of 4d theories on a torus (quantum elliptic algebras)
- Schwinger-Dyson Physics of 3d Theories with less supersymmetry…

An important open question: what is the meaning of the vortex character and the 
associated Schwinger-Dyson equations in quantum K-theory? 



Thank you!


